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Abstract
This paper proposes a new synchronization scheme called Double Compound Combination Anti-
Synchronization(DCCAS). Here we have taken eight non identical fractional order hyper chaotic systems
from which we take four master systems and other four slave systems.This technique is based on double
compound synchronization and compound combination synchronization.Theses systems are synchronized using
Lyapunov Stability Theory and Active control method.Due to complexity of the dynamical systems involved, this
scheme would provide high security in transmitting and receiving signals.
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1. Introduction
The chaotic behavior as found in various natural and non-
natural systems is a rich non-linear phenomenon and plays
an important role across various disciplines. A hyper chaotic
attractor is typically defined as having chaotic behavior with
atleast two positive lyapunov exponents.The minimal dimen-
sion for continuous hyper chaotic system is four. The first
4-D flow hyper chaotic was proposed in 1979 by Rossler.
Compound combination synchronization of chaos has been
investigated using six chaotic system evolving from different
initial conditions [1] .Whereas double compound synchroniza-
tion between four drive system and two response system for
memristor based Lorenz System have been investigated in
[2].Since synchronization about combination of two master
system and combination of two response systems have been
studied in [3]. Complete synchronization of chaotic attractors
of two identical complex Lorenz systems have been discussed

in [4].The synchronization between two fractional order hyper
chaotic systems have been studied in [5].Synchronization of
non identical fractional order hyper chaotic systems are dis-
cussed in [6].A new fractional order hyper chaotic Rabinovich
system and its dynamical behavior are discussed in [7].A novel
fractional order hyper chaotic system with a quadratic expo-
nential term and its synchronization are referred in [8].Chaotic
analysis and combination combination synchronization of a
novel hyper chaotic system without any equilibrium are in
[9].To study on fractional order hyper chaotic complex system
and their generalized function projective synchronization,a
scheme based on the tracking control technique are in [10].
Generalization of combination combination synchronization
of n-dimensional time delay chaotic system via robust adap-
tive sliding mode control, hyper chaos control and adaptive
synchronization with uncertain parameter for fractional or-
der Vander pol systems are discussed in [11] and [12]. As
the double compound combination synchronization for eight
identical memristor based integer order chua oscilators is in-
vestigated by using Lyapunov Stablity theory in [13].Analysis
of hyper chaotic complex Lorenz system and the fractional
lyapunov dimension of the hyper chaotic attractors of these
system is calculate in [14] and the hybrid chaos synchroniza-
tion of identical Arenedo system and non identical Arenedo
and Rossler system in [15].The qualitative properties of the
novel hyper chaotic Rikitake dynamo system are discussed in
[16].Dual combination synchronization schemes for non iden-
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tical different dimensional fractional order systems using scal-
ing matrix has been investigated in [17].Synchronization and
anti-synchronization of a fractional delayed memristor based
chaotic system has been analyzed carefully.Whereas synchro-
nization between non autonomous Liu and 4-D hyper chaotic
system in the presence of uncertain parameter through active
control method. In this manuscript our aim is to study the dou-
ble compound combination anti synchronization(DCCAS) of
eight non identical fractional order hyper chaotic systems.The
paper has been organized as follows.Section 2 contain prob-
lem formulation,in which we have introduced the scheme of
DCCAS.Section 3 contains system description and section 4
contains simulation results and section 5 concludes the article.

1.

2. Problem Formulation
Double Compound Combination Anti-Synchronization Scheme
We now introduce the scheme of double compound combina-
tion anti synchronization (DCCAS) among four n dimensonal
master systems and four n-dimensional slave systems .
We consider the first two master systems as:

Dα x1 = f1(x1(t)) (1)
Dα x2 = f2(x2(t)) (2)

Next we take two base master systems as:

Dα x3 = f3(x3(t)) (3)
Dα x4 = f4(x4(t)) (4)

Corresponding to the first two master systems we take two
slave systems as:

Dα y1 = g1(y1(t))+u1 (5)
Dα y2 = g2(y2(t))+u2 (6)

Next two slave systems are taken as:

Dα y3 = g3(y3(t))+u3 (7)
Dα y4 = g4(y4(t))+u4 (8)

Here xi = diag(xi1,xi2, ......,xin) and yi = diag(yi1,yi2, ......,yin)
are the state variables of the system (1)-(8) respectively.

fi(xi) = diag( fi1(xi), fi2(xi), ..., fin(xi)), gi(yi) = diag
(gi1(yi),gi2(yi), .....,gin(yi)) for i=1,2,3,4 are continuous func-
tions of master and slave systems (1)-(8).

1Journal
p-ISSN:2349-8404

ui, i = 1,2,3,4 are control functions to be designed.

Definition: Systems(1)-(8) are said to be in double com-
pound combination anti-synchronization , if the error defined
as e = (A1x1 +A2x2)(A3x3 +A4x4) +B1y1 +B2y2 +B3y3 +
B4y4 tends to zero,i.e.

limt→∞‖e‖= limt→∞‖(A1x1 +A2x2)(A3x3 +A4x4)+

B1y1 +B2y2 +B3y3 +B4y4‖= 0
(9)

where Ai = diag(ai1,ai2, ....,ain),Bi = diag(bi1,bi2, .....,bin),i=1,2,3,4,‖.‖
is the matrix norm and e = diag(e1,e2, ...,en)
In particular,if we take Ai = diag(1,1, ...,1),Bi = diag(1,1, ....1)
Then the error can be written as

e = (x1 + x2)(x3 + x4)+(y1 + y2 + y3 + y4) (10)

Therefore we get the error system as:

Dα e = (Dα x1 +Dα x2)(x3 + x4)+(x1 + x2)(Dα x3 +Dα x4)+

(Dα y1 +Dα y2 +Dα y3 +Dα y4)

(11)

Putting the values of the derivatives we get:

Dα e = ([(h1i +h21)(x3i + x4i)+(x1i + x2i)(h3i +h4i)

+ j1i + j2i + j3i + j4i +ui]
(12)

Theorem 1 If the Control functions are chosen of the form

ui =−(h1i +h2i)(x3i + x4i)− (x1i + x2i)(h3i+

h4i)−g1i−g2i−g3i−g4i−Ke

Then the master systems and slave systems achieve DCCAS.
Here K=diag(K1,K2, ....,Kn)is a positive definite matrix.
Proof: We define the Lyapunov function as:

V (e) =
1
2 ∑e2

DαV (e) = ∑eDα e

= ∑e[(h1i +h21)(x3i + x4i)+(x1i + x2i)

(h3i +h4i)+ j1i + j2i + j3i + j4i +ui

Substituting the designed controllers ui from Theorem 1 in
(12),we get DαV (e) =−∑Ke2

i.e.DαV is negative definite.
Therefore by Lyapunov Stablity Theorem , limt→∞‖e‖ =
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Fig 1::Phase Portraits of fractional order hyper chaotic (a)Lu system
in x11− x12− x13 (b)4D Integral system in x21− x22− x23 (c)Chen

system in x31− x32− x33 (d)Lorenz system in x41− x42− x43
(e)Xling system in y11− y12− y13 (f)Vanderpol system in

y21− y22− y23 (g)Rabinovich system in y31− y32− y33 (h)Rikitake
system in y41− y42− y43

0 This establishes that the master systems (1-4) and slave
systems(5-8) are now anti-synchronized in double compound
combination manner.

Remarks:
1.If two of Bi,(i = 1,2,3,4) = 0, then DCCAS reduces to
double compound anti-synchronization.

2. If one of Ai,(i = 1,2,3,4) = 0 and two of Bi,(i =
1,2,3,4) = 0 then it reduces to compound combination anti-
synchronization.

3.For the choice Ai = 0 and three of Bi, i = 1,2,3,4 =
0,then chaos control can be obtained.

4.The synchronization of (i) one drive and one response
chaotic systems (ii)two drive and one response systems (iii)two
drive and two response systems and so on are special case of
our eight chaotic systems.

5. The error e = (A1x1 +A2x2)(A3x3 +A4x4) +B1y1 +
B2y2 +B3y3 +B4y4 can be written as:
e= [A1x1(A3x3+A4x4)+B1y1+B2y2]+[A2x2(A3x3+A4x4)+
B3y3 +B4y4] which can be considered as the sum of two error
of the anti synchronization of compound combination.

3. System Description
Fractional Order Hyper Chaotic Lu System:

dα x11

dtα
= a11(x12− x11)+ x14

dα x12

dtα
=−x11x13 +a13x12

dα x13

dtα
= x11x12−a12x13 (13)

dα x14

dtα
= x11x13 +a14x14

For a11 = 36,a12 = 3,a13 = 20,a14 =−1 and α = 0.95 this
system is hyper chaotic for initial conditions (x11,x12,x13,x14)=(-
10,-14,12,10) as displayed in Fig. 1.

Fractional Order 4D Integral Hyper Chaotic System:

dα x21

dtα
= a21x21− x22

dα x22

dtα
= x21− x22x23x23

dα x23

dtα
=−a22x22−a21x21−a23x23−a24x24 (14)

dα x24

dtα
= x23 +a25x24

For a21 = 0.56,a22 = 1.0,a23 = 1.0,a24 = 6,a25 = 0.8 and
α = 0.95 , this system is hyper chaotic for initial conditions
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(x21,x22,x23,x24)=(1.2,0.6,0.8,0.5) as displayed in Fig. 1.

Fractional Order Hyper Chaotic Chen System:

dα x31

dtα
= a31(x32− x31)+ x34

dα x32

dtα
= a32x31− x31x33 +a33x32

dα x33

dtα
= x31x32−a34x33 (15)

dα x34

dtα
= x32x33 +a35x34

For a31 = 35,a32 = 7,a33 = 12,a34 = 3,a35 = 0.3 and α =
0.95, this system is hyper chaotic for initial conditions (x31,x32,
x33,x34)=(-1,-3,2,5)as displayed in Fig. 1.

Fractional Order Hyper Chaotic Lorenz System:

dα x41

dtα
= a41(x42− x41)+ x44

dα x42

dtα
= a42x41− x42− x41x43

dα x43

dtα
= x41x42−a43x43 (16)

dα x44

dtα
=−x42x43 +a44x44

For a41 = 10,a42 = 28,a43 = 8/3,a44 =−1 and α = 0.95,this
system is hyper chaotic for initial conditions (x41,x42,x43,x44)=
(1.5,3,-1,3) as displayed in Fig. 1.

Fractional Order Hyper Chaotic System (proposed by
Xin and Ling) [19]

dα y11

dtα
= b11(y12− y11)+ y14

dα y12

dtα
= b12y11 + y11y13− y14

dα y13

dtα
=−b13y13−b14y11y11 (17)

dα y14

dtα
= b13y11

For b11 = 10,b12 = 40,b13 = 2.5,b14 = 4 and α = 0.95,this
system is hyper chaotic for initial conditions (y11,y12,y13,y14)
=(1,2,3,4)as displayed in Fig. 1.

Fractional Order Vanderpol Hyper Chaotic System:
[12]

dα y21

dtα
= y22

dα y22

dtα
=−(b21 +b22y23)y21− (b21 +b22y23)y3

21−b23y22

(18)

+b24y23

dα y23

dtα
= y24 (19)

dα y24

dtα
=−b25y23 +b26(1− y23y23)y24 +b27y21

For b21 = 10,b22 = 3,b23 = 0.4,b24 = 70,b25 = 1,b26 = 5,b27 =
0.1and α = 0.95,this system is hyper chaotic for initial condi-
tions (y21,y22,y23,y24)=(0.1,-0.5,0.1,-0.5) as displayed in Fig.
1.

Fractional Order Rabinovich Hyper Chaotic System:
[7]

dα y31

dtα
=−b31y31 +b32y32)+ y32y33

dα y32

dtα
= b32y31−b33y32− y31y33 + y34

dα y33

dtα
=−b34y33 + y31y32 (20)

dα y34

dtα
=−b35y32

For b31 = 34,b32 = 6.75,b33 = 1,b34 = 1,b35 = 2 and α =
0.95,this system is hyper chaotic for initial conditions (y31,y32,y33,y34)=
(5.5,-1.25,8.4,2.75) as displayed in Fig. 1.

Fractional Order Hyper Chaotic Rikitake Dynamic
System: [16]

dα y41

dtα
=−b41y41 + y42y43−b42y44

dα y42

dtα
=−b41y42 + y41(y43−b43)−b42y44

dα y43

dtα
= 1− y41y42 (21)

dα y44

dtα
= b44y42

For b41 = 1,b42 = 1.7,b43 = 1,b44 = 0.7 and α = 0.95, this
system is hyper chaotic for initial conditions (y41,y42,y43,y44)=(3.5,1.7,-
4.5,2.8) as displayed in Fig. 1.

4. Numerical Simulations & Discussions
From (10), we have the error as:

e = (A1x1 +A2x2)(A3x3 +A4x4)+(B1y1 +B2y2 +B3y3 +B4y4)
(22)
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Fig2:Double compound combination anti-synchronized trajectories
of master and slave systems

Therefore, the error system is:
e11 = (x11 + x21)(x31 + x41)+ y11 + y21 + y31 + y41
e12 = (x12 + x22)(x32 + x42)+ y12 + y22 + y32 + y42
e13 = (x13 + x23)(x33 + x43)+ y13 + y23 + y33 + y43
e14 = (x14 + x24)(x34 + x44)+ y14 + y24 + y34 + y44

Differentiating the above we get the following:

Dα e11 = (Dα x11 +Dα x21)(x31 + x41)+(x11 + x21)

(Dα x31 +Dα x41)+(Dα y11 +Dα y21 +Dα y31

+Dα y41)

Dα e12 = (Dα x12 +Dα x22)(x32 + x42)+(x12 + x22)

(Dα x32 +Dα x42)+(Dα y12 +Dα y22 +Dα y32

+Dα y42)

Dα e13 = (Dα x13 +Dα x23)(x33 + x43)+(x13 + x23)

(Dα x33 +Dα x43)+(Dα y13 +Dα y23 +Dα y33

+Dα y43)

Dα e14 = (Dα x14 +Dα x24)(x34 + x44)+(x14 + x24)

(Dα x34 +Dα x44)+(Dα y14 +Dα y24 +Dα y34

+Dα y44) (23)

Now designing the controllers as in Theorem 1:

u1 =−(a11(x12− x11)+ x14)(x31 + x41)− (b11(y12− y11)

+y14)−K1(x11x41 + y11)− (a21x21− x22)(x31

+x41)− y22−K1(x21x31 + y21)− (a31(x32− x31)

+x34)(x31 + x41)− (−b31y31 +b32y32 + y32y33)

+y14)−K1(x11x21 + y31)− (a41(x42− x41)+ x44)

(x11 + x21)− y22−K1(x21x41 + y41)

u2 =−(−x11x13 +a13x12)(x32 + x42)− (b12y11 + y11

y13− y14)+ y14)−K2(x12x42 + y12)− (x21− x22

x23x23)(x32 + x42)− [−(b21 +b22y23)y21− (b21

+b22y23)y21y21y21−b23y22 +b24y23]

−K2(x22x32 + y22)− (a32x31− x31x33 +a33

x32)(x12 + x22)− (b32y31−b33y32− y31y33)

−K2(x12x32 + y32)− (a42x41− x42− x41x43)

(x12 + x22)− (−b41y42 + y41(y43−b43)−b42y44)

−K2(x22x42 + y42
(24)

u3 =−(x11x12)(x33 + x43)− (−b13y13−b14y11y11)

−K3(x13x43 + y13)− (−a22x22−a21x21−a23

x23−a24x24)(x33 + x43)− [y24]−K3(x23x33

+y23)− (x31x32−a34x33)(x13 + x23)− (−b34y33

+y31y32)−K3(x13x33 + y33)− (x41x42−a43

x43)(x13 + x23)− (1− y41y42 + y41)−K3(x23x43 + y43)

u4 =−(x11x13 +a14x14)(x34 + x44)− (b13y11)−K4

(x14x44 + y14)− (x23 +a25x24)(x34 + x44)

−[−b25y23 +b26(1− y23y23)y24 +b27y21]

−K4(x24x34 + y24)− (x32x33 +a35x34)(x14 + x24)

−(−b35y32)−K4(x14x34 + y34)− (−x42x43 +a44

x44)(x14 + x24)− (b44y42)−K4(x24x44 + y44)

Applying the controllers in equation (25),the error dynamics
simplifies as:

Dα e11 =−K1e11

Dα e12 =−K2e12

Dα e13 =−K3e13

Dα e14 =−K4e14

(25)

Next we consider the Lyapunov function as:

V =
1
2

4

∑
i=1

e2
i

Clearly V is positive definite function with a negative definite
derivative.

DαV =
4

∑
i=1

ei(Dα ei)

=
4

∑
i=1

ei(−Kiei)
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Fig 3:Double compound combination anti-synchronization errors

−
4

∑
i=1

Kie2
i < 0

Therefore by Lyapunov Stability Theorem we have that error
asymptotically converges to 0,i.e. double compound combina-
tion anti synchronization is achieved.
For numerical Simulations we have considered Ki = 1∀i =
1,2,3,4. The double compound combination anti-synchronized
trajectories have been displayed in Fig. 2.The errors converg-
ing to zero has been shown in Fig.3.

5. Conclusion
In this paper DCCAS has been achieved among eight chaotic
systems. We have used the Lyapunov Stablity Theory and Ac-
tive Control method to achieve DCCAS.By designing suitable
controllers the error converges to zero.Such technique would
prove fruitful in the field of secure communication because of
the complexity of the systems involved.
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